Search results for "TOPOLOGICAL DEFECTS"

showing 4 items of 4 documents

Dynamic tuning of the director field in liquid crystal shells using block copolymers

2020

When an orientationally ordered system, like a nematic liquid crystal (LC), is confined on a self-closing spherical shell, topological constraints arise with intriguing consequences that depend critically on how the LC is aligned in the shell. We demonstrate reversible dynamic tuning of the alignment, and thereby the topology, of nematic LC shells stabilized by the nonionic amphiphilic block copolymer Pluronic F127. Deep in the nematic phase, the director (the average molecule orientation) is tangential to the interface, but upon approaching the temperature TNI of the nematic– isotropic transition, the director realigns to normal. We link this to a delicate interplay between an interfacial …

medicine.medical_specialty: Physics [G04] [Physical chemical mathematical & earth Sciences]Shell (structure)Topological dynamics02 engineering and technology01 natural sciencessurfactantsSpherical shellTopological defectsTopological defectLiquid crystal shellsLiquid crystalPhase (matter)0103 physical sciencesmedicineQA010306 general physicsTopology (chemistry)Boundary conditionsIsotropy021001 nanoscience & nanotechnologyCondensed Matter::Soft Condensed Matter: Physique [G04] [Physique chimie mathématiques & sciences de la terre]Chemical physics0210 nano-technologyConfinementPhysical Review Research
researchProduct

Tuning the defect configurations in nematic and smectic liquid crystalline shells

2013

Thin liquid crystalline shells surrounding and surrounded by aqueous phases can be conveniently produced using a nested capillary microfluidic system, as was first demonstrated by Fernandez-Nieves et al. in 2007. By choosing particular combinations of stabilizers in the internal and external phases, different types of alignment, uniform or hybrid, can be ensured within the shell. Here, we investigate shells in the nematic and smectic phases under varying boundary conditions, focusing in particular on textural transformations during phase transitions, on the interaction between topological defects in the director field and inclusions in the liquid crystal (LC), and on the possibility to rel…

Phase transitionMaterials scienceCapillary actionGeneral MathematicsmicrofluidicsGeneral EngineeringShell (structure)General Physics and AstronomyRotationTopological defectCondensed Matter::Soft Condensed Matterliquid crystalsLiquid crystalChemical physicsPhase (matter): Multidisciplinary general & others [G99] [Physical chemical mathematical & earth Sciences]Boundary value problemtopological defects: Multidisciplinaire général & autres [G99] [Physique chimie mathématiques & sciences de la terre]Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
researchProduct

Curvature as a Guiding Field for Patterns in Thin Block Copolymer Films

2018

Experimental data on thin films of cylinder-forming block copolymers (BC)—free-standing BCmembranes as well as supported BC films—strongly suggest that the local orientation of the BC patternsis coupled to the geometry in which the patterns are embedded. We analyze this phenomenon using generalsymmetry considerations and numerical self-consistent field studies of curved BC films in cylindricalgeometry. The stability of the films against curvature-induced dewetting is also analyzed. In goodagreement with experiments, we find that the BC cylinders tend to align along the direction of curvature athigh curvatures. At low curvatures, we identify a transition from perpendicular to parallel alignm…

Materials scienceField (physics)Ciencias FísicasGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technologyCondensed Matter - Soft Condensed Matter010402 general chemistryCurvature01 natural sciencesTopological defect//purl.org/becyt/ford/1 [https]Orientation (geometry)PerpendicularDewettingThin filmCondensed matter physics//purl.org/becyt/ford/1.3 [https]021001 nanoscience & nanotechnologyCOPOLYMERSSymmetry (physics)0104 chemical sciencesBUCKLINGSoft Condensed Matter (cond-mat.soft)TOPOLOGICAL DEFECTS0210 nano-technologyCIENCIAS NATURALES Y EXACTASFísica de los Materiales Condensados
researchProduct

Topological–chiral magnetic interactions driven by emergent orbital magnetism

2019

Two hundred years ago, Ampère discovered that electric loops in which currents of electrons are generated by a penetrating magnetic field can mutually interact. Here we show that Ampère’s observation can be transferred to the quantum realm of interactions between triangular plaquettes of spins on a lattice, where the electrical currents at the atomic scale are associated with the orbital motion of electrons in response to the non-coplanarity of neighbouring spins playing the role of a magnetic field. The resulting topological orbital moment underlies the relation of the orbital dynamics with the topology of the spin structure. We demonstrate that the interactions of the topological orbital …

Magnetic properties and materialsScienceQFerromagnetismCondensed Matter::Strongly Correlated Electronslcsh:Qddc:500Astrophysics::Earth and Planetary Astrophysicslcsh:ScienceArticleTopological defectsNature Communications
researchProduct